

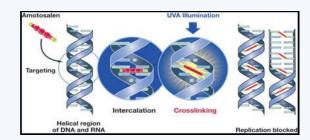
Un bref historique

1942-1985

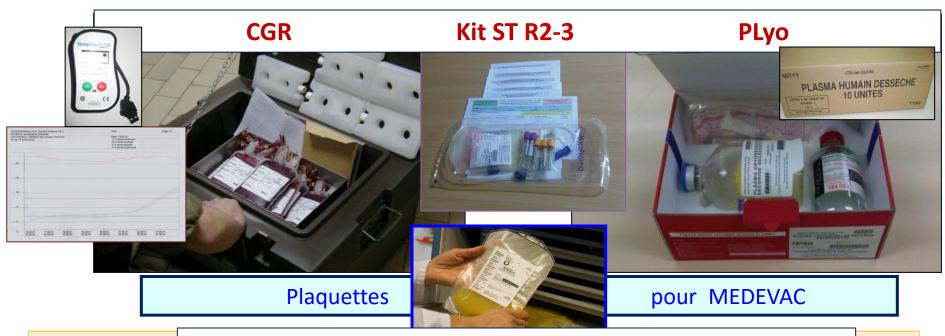
PC: Plasma cryodesséché avec grand pool

1994

PCS avec petit pool Sécurisé par quarantaine 2003


PCSD Déleucocyté 2010

PLYO sécurisé par amotosalen

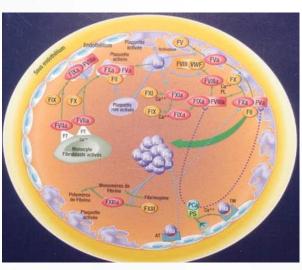


Sommaire:

- Généralités
- La matière première
- La lyophilisation
- Les contrôles qualité
- Le conditionnement
- Le futur

PSL ADAPTES AU NIVEAU D'ENGAGEMENT

- Généralités
- La matière première
- La lyophilisation
- Les contrôles qualité
- Le conditionnement
- Le futur

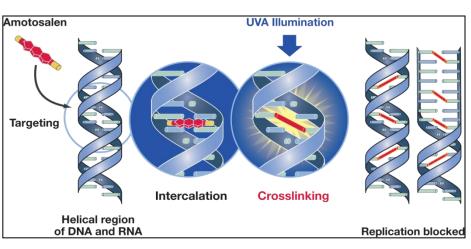


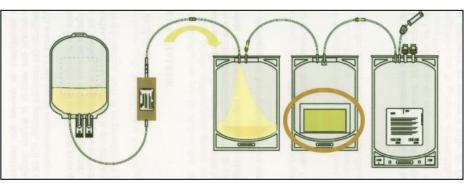
LE PLASMA THERAPEUTIQUE

- Partie liquide du sang qui contient:
 - Facteurs de coagulation +++
 - Anticorps
 - Autres protéines:
 - Albumine et pression osmotique
 - Protéines anti-inflammatoires et réparatrices


- Surgélation puis conservation à -25°C et décongélation en 20 min au bain-marie contrôlé à 37°C.
- Lyophilisation puis conservation entre 4 et 25°C et reconstitution rapide et simple par ajout d'eau PPI.

La matière première




Clamart

Donors are all volunteers and undergo a rigorous medical selection

Atténuation par : AMOTOSALEN

Sommaire:

- Généralités
- La matière première
- La lyophilisation
- Les contrôles qualité
- Le conditionnement
- Le futur

La lyophilisation?

- Lyophilisation autrefois appelée cryodessication est une opération de déshydratation à basse température qui consiste à éliminer par sublimation la majeure partie de l'eau contenue dans un produit.
- Utilisée en agroalimentaire sur les produits à forte valeur ajoutée (technique onéreuse, séchage conventionnel préféré).
- Utilisée en pharma/santé sur les petits volumes (ATB) rarement sur les grands volumes (>50 ml) rarement sur les formes orales (nouveaux excipients)
- Utilisé pour les formes injectables : <u>mais la lyophilisation n'est</u> <u>pas une technique de stérilisation.</u>

PLYO

- Deux <u>lyophilisateurs</u> identiques SMH Usifroid pour une production en routine des flacons de plasma lyophilisé,
- 150 flacons par lyophilisateur
- Equipe de 4 personnes
- Cycle validé et optimisé, autorisé ANSM
 - Améliorations récentes :
- Etude bouchons : l'utilisation du stopper entraine une plus forte humidité due à un effet de résistance durant le processus de lyophilisation,
- Mise à vide des bouchons après autoclavage : diminution du taux d'humidité dans le temps (relargage de l'humidité sous vide)

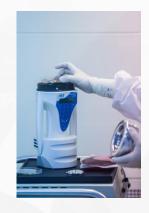
PRÉPARATION DU PLYO

Répartition aseptique avant lyophilisation

Mélange PFC

12 à 14 flacons

notre combat


- Traitement d'air (environnement de travail) : ZAC
- Eau (utilisée pour le process) : eau purifiée et eau pour préparation injectable
- Vapeur : stérilisation par autoclavage et lyophilisation (cycle SEP) : générateur de vapeur pure
- Traitement des effluents liquides: cuve de neutralisation
- ICPE (normes environnementales) : fluides frigorigènes, soumis à inspection

- Les ZACs sont des zones dont la propreté particulaire et microbiologique est définie dans les normes ISO 14 644 et reprises dans les BPF édition 2014et 2015 (GMP).
- La classe A est la classe dans laquelle doit être préparée les produits injectables sans phase de stérilisation terminale (répartition aseptique).
- Le PLYO doit être préparé dans une classe A dans B selon annexe I des BPF pharmaceutiques (référentiel opposable).

- Principe: L'air est aspiré depuis l'extérieur dans une CTA, filtré, réchauffé (ou refroidi), humidifié et soufflé dans les ZACs avec un filtre terminal dont la qualité varie en fonction de la classe d'air attendue ou l'air est recyclé.
- CTA air neuf (1) et CTA de recyclage (5) dédiées en fonction des salles (TC, PLYO ..)
- Quatre qualifications annuelles de toutes les ZACs
- Maintenance hebdomadaire, cahier de maintenance
- La classe A = PSM (PTC, PTT, MTI-PP)
- La classe A = un plafond filtrant (PLYO)
- Contrôles IPC: boites de sédimentation, contact, aérobiocollecteur (5), comptage particulaire (5), P, T, hygro.

- Le CTSA possède une « chaine des eaux » pharmaceutique,
- Eau de puisage : eau sanitaire car potabilité obligatoire selon la PE
- Production eau purifiée conforme à la monographie eau purifiée vrac de la pharmacopée européenne
- Différentes étapes : préfiltration, filtration adoucissement, osmose, échangeur d'ions à lits mélangés, cuve inertage à l'azote (4000 L), filtration 0,2 µm
- Capteurs techniques en ligne :chloromètre, T, P, conductivité...
- Alimentation d'un distillateur à 4 colonnes pour production d'eau distillée (seul mode de production d'eau PPI selon la PE) cuve 400 L
- Température à 85°C tout au long de la boucle
- Production d'eau PPI conforme à la monographie EPPI vrac de la PE.
- Utilisation: labos (EPU), nettoyage des flacons PLYO (EPPI), mise à blanc (EPPI).

sommaire

- Généralités
- La matière première
- La lyophilisation
- Les contrôles qualité et études de stabilité
- Le conditionnement
- Le futur

Tests libératoires sur chaque lot (CQI)

- Hémollysines: absence
- Titre Anti-A & Anti-B < 1/64
- Ac irréguliers: absence
- VIII >= 0,5 UI/mL
- FIB >= 2 g/L
- V = 0,5 (non libératoire mais IQ)
- Amotosalen < 2 μM
- Protéines >= 50 g/L
- Humidité < 2%
- Temps de reconstitution < 6 min
- Sterilité

- Génération de thrombine
- Protein C
- Protein S
- AT3
- Alpha 2 antiplasmine
- Von Willebrandt
- Multimère de vWF
- Thrombinographie
- Thromboelastograme
- Complexes TAT & Fragments 1+2
- Adam 13
- Protéines & Immuno-électrophorèse
- pH (4 & 22°C): CTSA

QUALIFICATION BIOLOGIQUE DES DONS

• Systématique:

- Hémoglobine
- ABO Rh Kell
- HIV 1&2 anticorps & PCR unitaire
- HCV anticorps & PCR unitaire
- HBV antigène & PCR unitaire
- HTLV anticorps
- Syphilis anticorps

• Fonction des antécédents:

- Chagas anticorps
- Malaria anticorps

Pour le plasma:

- Ac anti-HLA
- Pour le PLYO
 - Tests d'hémostase
 - VHE

Plyo: facteurs de coagulation

Votre vie, notre combat

MINISTÈRE

Parameters	Units	SD-FFP	IA-FFP	Quar-FFP	FLYP	Reference range
Fibrinogen	g/L	2.8	2.7	2.8	2.4	2 - 4
Factor V	IU/mL	0.9	1.0	1.0	0.7	0.7 – 1.2
Factor VIII	IU/mL	0.7	0.8	1.1	0.7	0.5 – 1.5
Factor XI	IU/mL	0.8	0.6	1.0	0.7	0.5 – 1.4
Protein C	IU/mL	1.0	0.9	1.2	0.9	0.7 – 1.2
Protein S	IU/mL	0.6	1.0	1.4	0.9	0.7 – 1.4
Antithrombin	IU/mL	0.9	1.0	1.0	1.0	0.8 – 1.2
Q antiplasmin	IU/mL	0.2	0.8	1.0	0.9	0.8 – 1.2

ANSM 2012

Etude de stabilité 42 mois à 4°C

Votre vie, notre combat

Time (month)	0	27	42		0	27	42		0	27	42	0	27	42
Temperature	4°C													
Humidity (%)	0,9	0,6	0,2*		1,2	0,9	0,2*		1	0,6	0,3*	1,2	1,2	0,3*
Fibrinogen (g/L)	2,2	2,2	2,3		2,5	2,7	2,8		2,4	2,6	2,6	2,43	2,5	2,5
F VIII (UI/mL)	0,7	0,8	0,6		0,8	0,8	0,8		0,8	0,8	0,7	0,8	0,8	0,7
FV (%)	0,6	0,6	0,6		0,8	0,7	0,8		0,7	0,7	0,7	0,8	0,8	0,8
Total Proteins (g/L)	56	58	56		52	57	59		53	56	61	594	62	61

ETUDE DE STABILITE DU PLYO A DJIBOUTI

6 MOIS (mars – septembre 2014)	DJIBOUTI	mini	maxi
température		20° C	50° C
hygrométrie		19%	87%

Sac de soutien d'activités de terrain avec thermohydromètre.

Deplac<mark>emen</mark>ts à pieds, VAB, RÉPUBLIQUE FRANC<mark>HE</mark>ÉI<mark>IC</mark>optère.

			T1		T2			
0.0	CONDITIONEMENT & TEMPS	ТО	Pochon	Pochon + sac isotherme	Pochon	Pochon + sac isotherme		
2000	Date	17/03/2014	2 mois 1/2		9 mois			
	Taux d'humidité (%)	0,75	1,15	1,13	1,09	1,19		
	Temps de reconstitution	3 min 35	3 min 10	3 min 30	3 min 00	4 min 20		
	Fibrinogène (g/l)	2,94	2,59	2,71	2,48	2,51		
	Facteur VIII (UI/ml)	0,95	0,68	0,63	0,54	0,57		
,	Facteur VIII /20 (UI/ml)	0,95	0,66	0,71	0,63	0,62		
	Facteur V (%)	94	83	86	62	60		
	Protéines (g/l)	54,8	57,3	58,3	58,2	57,7 25		
			19					

EVOLUTIONS REGLEMENTAIRES ET PLASMA LYOPHILISE

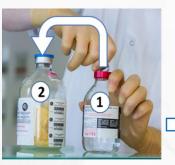
- 2011: Le PLyo remplace le PCSD, autorisé par l'AFSSaPS en OPEX.
- **2012**: Le PLyo est autorisé par l'AFSSaPS en regard des données cliniques d'Afghanistan en milieu civil, sous 2 conditions:
 - Distribution par l'EFS au travers d'une convention avec le CTSA.
 - Étude observationnelle (F suivi) ou PHRC (Lille) pour confirmer les indications:
 - Préhospitalier ou délai trop important pour plasma décongelé
 - Précarité de la chaîne du froid negative

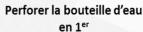
2014:

- Tarification au JO pour remboursement: 370€ TTC
- Distribution à toutes les structures du SSA (et tout HIA)

2015

- Autorisation d'exportation
- 2016
 - PHRC civilo-militaire pour un usage pré-hospitalier
 - Partenariat EFS





CARACTERISTIQUES DU PLYO

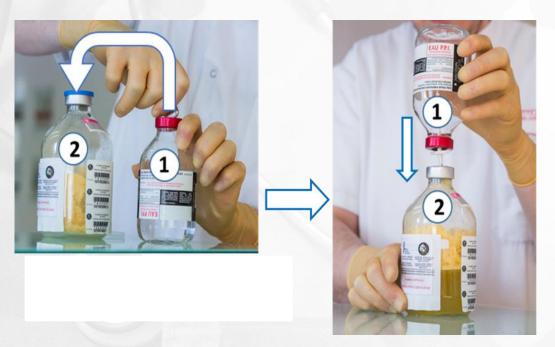
- Reconstitution < 6 min (moy, 3').
- Universel pour le Groupe Sanguin.
- Plasma thérapeutique: mêmes indications que le PFC
- Mêmes caractéristiques que le PFC:
 - VIII ≥ 0,5 UI/I, FIB ≥ 2g/I,
 - $GB \le 10^4$
- pH=8 avant administration
- Efficace et sûre:
 - Contrôles de qualité unitaires.
 - Hémovigilance active depuis 2002.
 - Suivi clinique et biologique depuis 2010.
 - Sécurisé par Amotosalen® depuis 2010.
 - VHE négatif
- 2 ans de péremption à temp. ambiante* → 42 mois.
 - * 0 40 avec pic 53°C

Retourner la bouteille d'eau pour perforer en 2ème le flacon de PLYO/FLYP

- Généralités
- La matière première
- La lyophilisation
- Les contrôles qualité
- Le conditionnement
- Le futur

Kit carton pour role 1 et 2

PLYO en sac



RECONSTITUTION

Prêt en moins de 5 minutes

HEMOVIGILANCE 2010 – 2015

Clinical evolution and tolerance: 2462 PLYO

Clinical tolerance	All nationalities				
Good	446	99,1%			
Adverse event	4	0,9%			
Total recipient	450	100,0%			

Only 4 adverse events were reported in 6 years

Fugace erythema
Imputability is not sure

- Généralités
- La matière première
- La lyophilisation
- Les contrôles qualité
- Le conditionnement
- Le futur

LYO de Developpement

Minifast 4 Imalife

- Volume de glace 8 kg, température mini et max des étagères-50°C sans charge à +70°C, vitesse de descente en température +20 à -40°C en 30min soient 2°C/min sans charge, température piège - 80 °C,
- Etagères 2+1 avec 19 cm à 5,5 cm de hauteur
- 304 L et 316 L
- Non stérilisable en place, non BPF: utilisation in vitro, études de stabilité, pas d'essais clinique
- Situé en ZAC donc produit stérile sous plafond classe A

• <u>Système veriseq</u> de nucléation contrôlée est adjoint au lyophilisateur : permettre une congélation complète et uniforme par contact avec l'azote liquide au sein des flacons, brouillard de glace dans des conditions aseptiques, nucléation <1 minute, congélation : solidification totale du produit, cristaux plus fins

La nucléation : premier point qui congèle Stabilité améliorée (protéines) Dissolution plus rapide (/3) Cycle de lyo plus court

RECHERCHE ET DEVELOPPEMENT PLYO

- Utilisation du PLYO en secteur civil
 - Urgence Vitale Immédiate (CHRU Lille).
 - Préhospitalier (BSPP-SAMU 75-BMPM-SAMU13) .
- Lyophilisation à façon (EFS, USA...).
- Nouveaux conditionnements.

ETUDE FRANÇAISE « PREHO-PLYO »

 1ère Etude randomisée, contrôlée, ouverte, multicentrique avec PLYO

Paris - Marseille - Annecy - Lyon

- 2 groupes parallèles
 - > 4 PLYO max en 1ère intention + TTT habituel
 - pas de PLYO + TTT habituel

- **Objectif:** Montrer le bénéfice de l'administration précoce de PLYO
 - 1. dans la prise en charge de la **coagulopathie** du traumatisé grave hémorragique.
 - 2. en termes de nécessité transfusionnelle
 - 3. en termes de survie
- Nombre de sujets nécessaires : 70 X 2
 - Démarrage fin 2015.

REMERCIEMENTS

Equipe de production!

Equipe du contrôle qualité!

