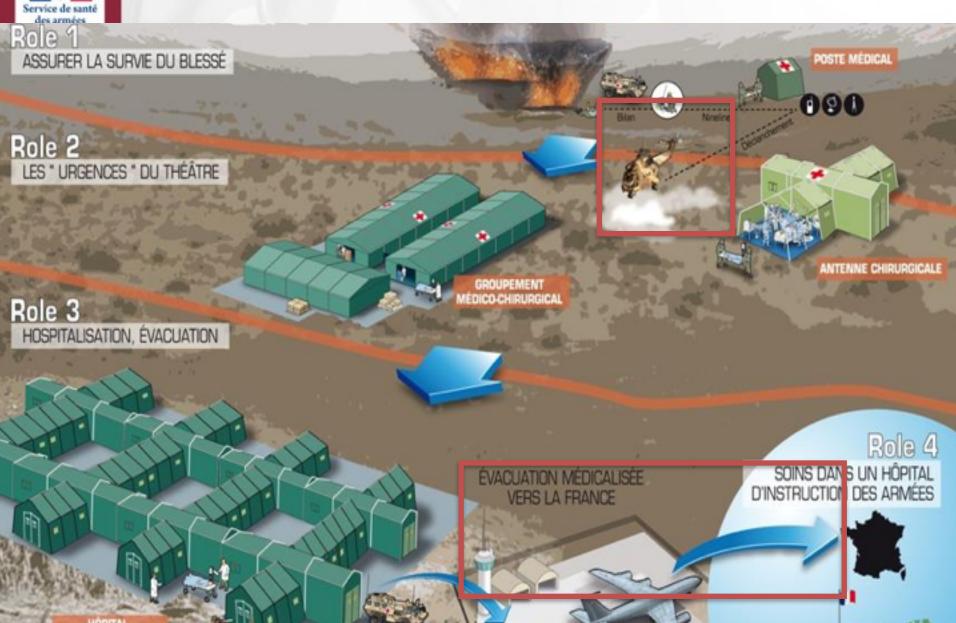
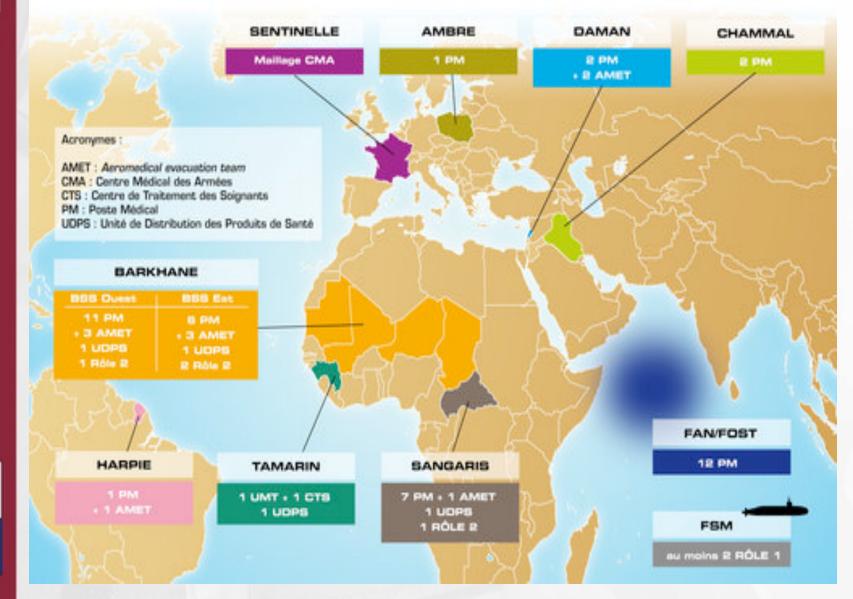


MP DABAN JL

Anesthésie HIA Percy

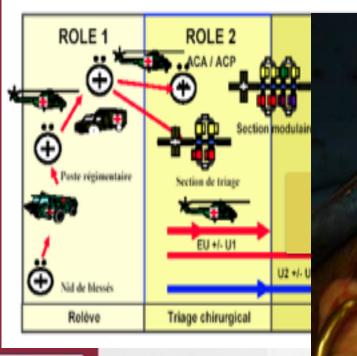


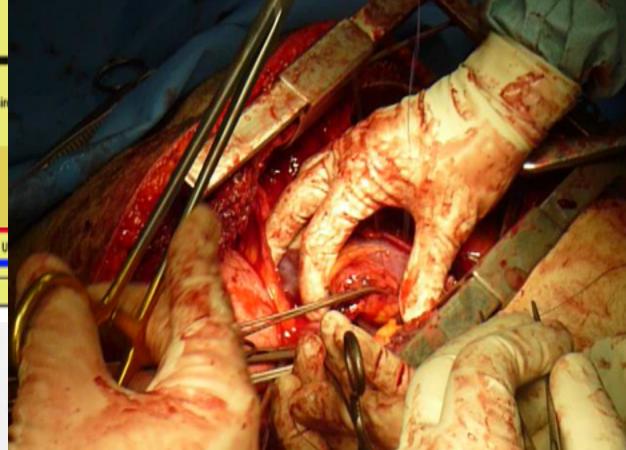
CONGRES CTSA
Avril 2016



Chaîne santé en opération

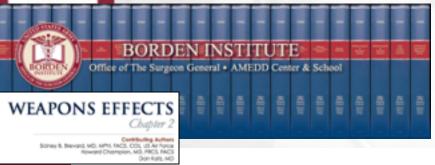
OPEX 2016

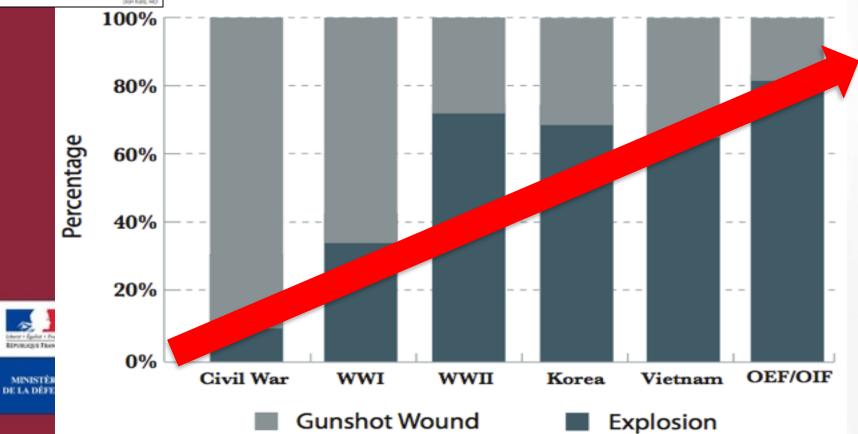




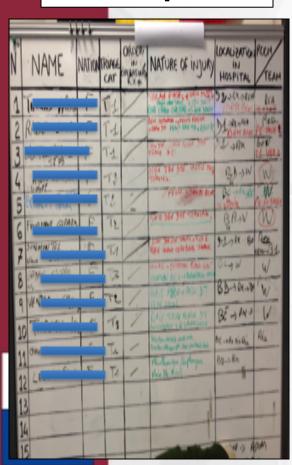
MINISTÈRE

Chaîne de survie médicalisée Le blessé « mobile »


Amener le blessé en < 1 heure

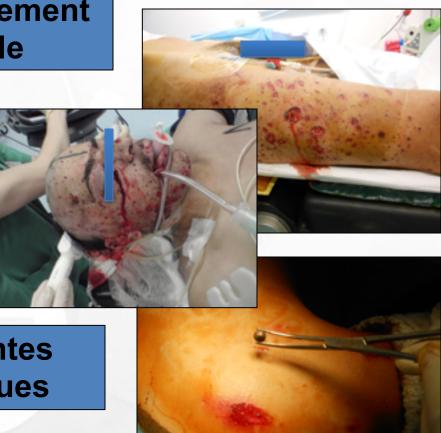


Contexte



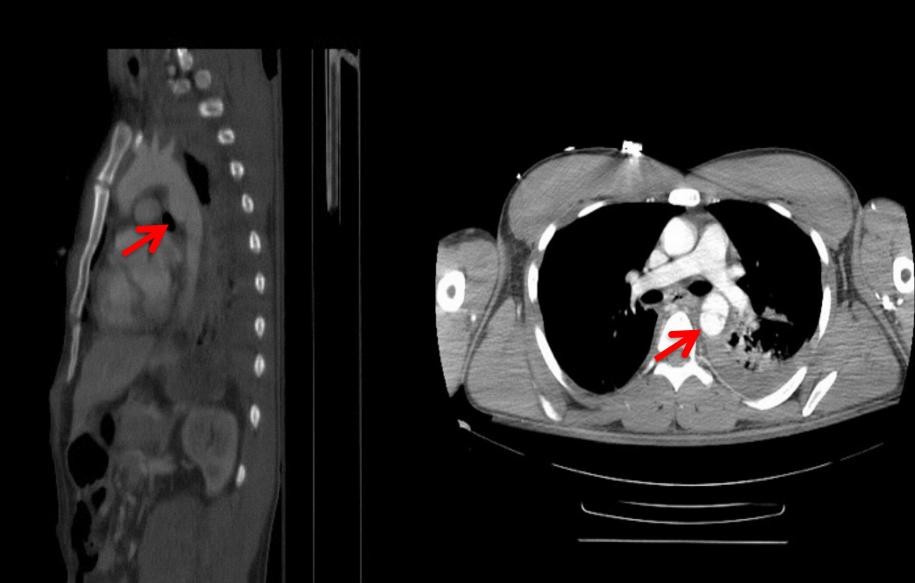
Spécificités militaires

Votre vie


Blessés multiples

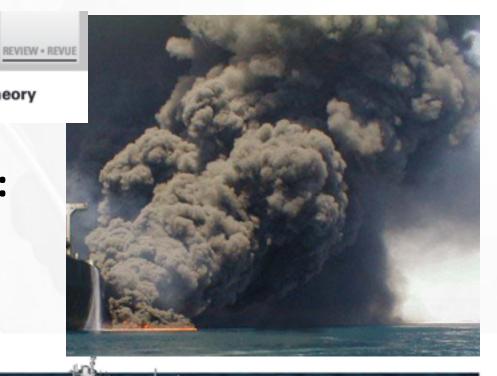
80 % des blessés **EXPLOSION**

Environnement hostile


Lésions multiples

Contraintes logistiques

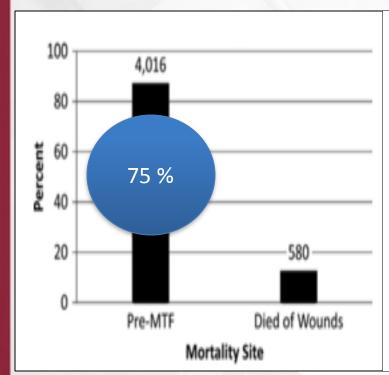
Exemple de bilan lésionnel

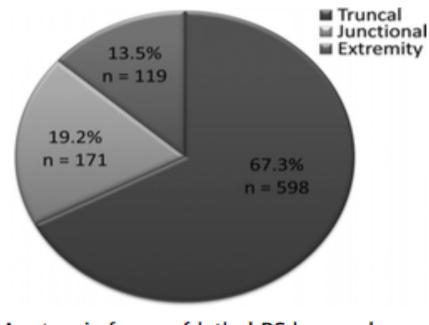


Can J Surg 2014

Damage control resuscitation: history, theory and technique

Damage control: le concept




Mortalité précoce au combat

ORIGINAL ARTICLE

Death on the battlefield (2001–2011): Implications for the future of combat casualty care

Brian J. Eastridge, MD, Robert L. Mabry, MD, Peter Seguin, MD, Joyce Cantrell, MD, Terrill Tops, MD, Paul Uribe, MD, Olga Mallett, Tamara Zubko, Lynne Oetjen-Gerdes, Todd E. Rasmussen, MD, Frank K. Butler, MD, Russell S. Kotwal, MD, John B. Holcomb, MD, Charles Wade, PhD, Howard Champion, MD, Mimi Lawnick, Leon Moores, MD, and Lorne H. Blackbourne, MD

Anatomic focus of lethal PS hemorrhage.

« Sauvetage au combat »

- Tout combattant est un soignant
 - Agir en moins de 10 minutes

Gestes de sauvetage

Tourniquet use for civilian extremity trauma

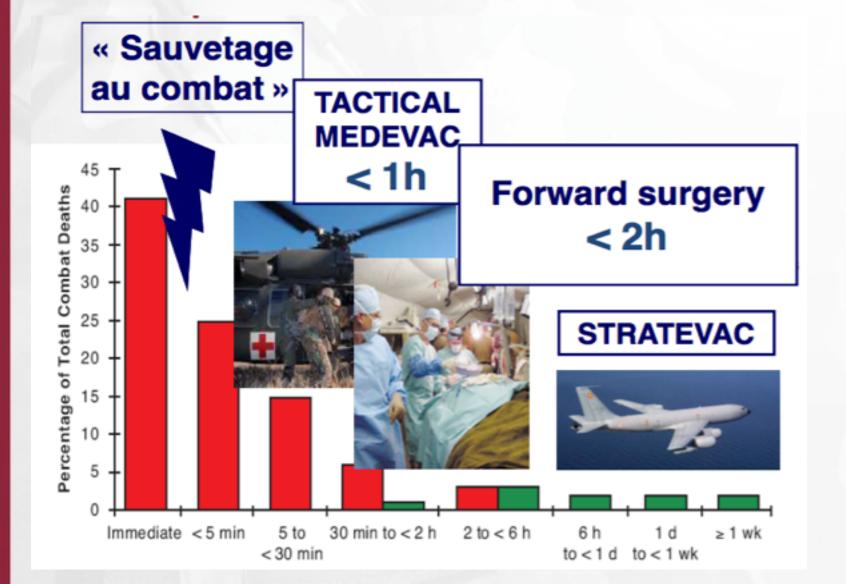
Kenji Inaba, MD, Stefano Siboni, MD, Shelby Resnick, MD, Jay Zhu, MD, Monica Darlene Wong, MS, Tobias Haltmeier, MD, Elizabeth Benjamin, MD, PhD, and Demetrios Demetriades, MD, PhD, Los Angeles, California

J Trauma Acute Care Surg. 2015;79: 232-237

SAMU opéra Votre vie,

DC « *ground zero* » 2016 SAMU opérationnel

Garrot en milieu civil



Damage control « ground zero »



BEFOREIGER FRANÇAISE

MINISTÈRE DE LA DÉFENSE

Extraction - Tactical MEDEVAC


Prehospital Blood Transfusion versus Crystalloid Alone in the Air Medical Transport of Trauma Patients

Michael P. Sumida, MD,¹ Karen Quinn, RN,¹ Patricia L. Lewis, RN,¹ Yonna Jones, RN,¹ Donald E. Barker, MD, FACS,¹ David L. Ciraulo, DO, MPH,² Vernon Cowell, MD, MPH,² Stephen Luk, MD,² Diane Murphy, RN, CEN,² Lenworth Jacobs, MD, MPH, FACS²

NEGATIF???

Civil
Rétrospectif
31 Pas transfo
17 transfu

Table 2 Physiologic Variables, Fluid Utilization, and Flight Time Comparisons (Reported as Means)								
Group (N)	рН	PCO ₂	нсо	PO ₂	Lactated Ringer (mL)	Blood (mL)	Total fluid (mL)	Length of flight
A (31)	7.37	33.7	21.4	241.2	2929.5	XXX	2929.5	12.4 min
B (17)	7.23	33.3	14.6	237.1	3112.3	710.7	3905.2	33.5 min
P value	.008	.858	.0001	.923	.730	XXX	.131	.0001

Pre-Trauma Center Red Blood Cell Transfusion Is Associated with Improved Early Outcomes in Air Medical Trauma Patients

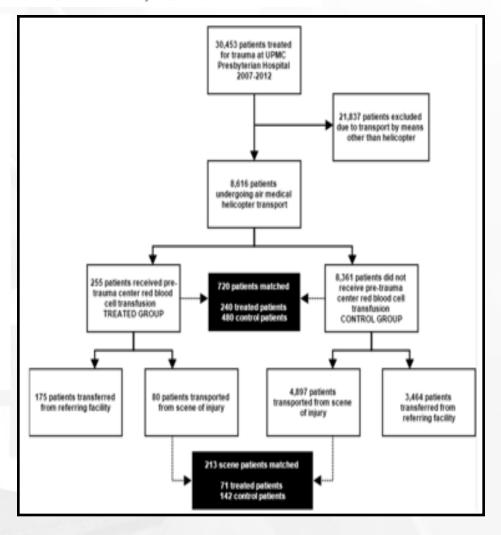
Level I trauma center

propensity score

Joshua B Brown, MD, Jason L Sperry, MD, MPH, FACS, Anisleidy Fombona, BS, Timothy R Billiar, MD, FACS, Andrew B Peitzman, MD, FACS, Francis X Guyette, MD, MPH

Table 1. Protocol for Helicopter Emergency Medical Services Red Blood Cell Transfusion

RBC transfusion should be administered after 1 to 2 L crystalloid total has been received by an injured patient and any one of the following are present:


- 1. Hypotension with systolic blood pressure <90 mmHg
- Changes in mental status
- 3. Changes in skin color (pallor, mottling, or cyanosis)
- 4. Tachycardia with heart rate >120 bpm
- Capillary refill >2 s
- Urine output <30 mL/h for ≥4 h (inter-facility transports)
- Lactate level ≥4 mmol/L
- Shock index (HR/SBP) >0.9
- 9. RBC transfusion initiated at a referring facility (inter-facility transports)

In cases of penetrating wounds or clinical evidence of active bleeding, RBC can be initiated earlier through consultation with a medical command physician.

HEMS, helicopter emergency medical services; HR, heart rate; SBP, systolic blood pressure.

http://dx.doi.org/10.1016/j.jamcollsurg.2015.01.006

Pre-Trauma Center Red Blood Cell Transfusion Is Associated with Improved Early Outcomes in Air Medical Trauma Patients

Level I trauma center

propensity score

Joshua B Brown, MD, Jason L Sperry, MD, MPH, FACS, Anisleidy Fombona, BS, Timothy R Billiar, MD, FACS, Andrew B Peitzman, MD, FACS, Francis X Guyette, MD, MPH

	AOR for PTC RBC	95% CI	p Value
All HEMS			
24-h survival	4.91	1.51-16.04	0.01
Shock on admission	0.28	0.09-0.85	0.03
TIC	1.39	0.87 - 2.24	0.17
In-hospital survival	1.06	0.42 - 2.61	0.90

« PTC RBC was independently associated with an increased probability of 24-hour survival, decreased risk of shock on admission, and lower 24-hour RBC transfusion requirement in severely injured air medical trauma patients with evidence of prehospital shock »

Retrospective cohort study

Level One Trauma Center 2007 to 2013


5581 patients included in the study, 231 (4%) received PBT

		No PBT	PBT	
Death in hospital	390			0.212
No		75% (147)	70% (136)	
Yes		25% (48)	30% (59)	
Death in 24hr	390			0.291
No		84% (164)	80% (156)	
Yes		16% (31)	20% (39)	

des armées

Votre vie, notre combat

Prehospital blood transfusion in the en route management of severe combat trauma: A matched cohort study

David J. O'Reilly, FRCS, Jonathan J. Morrison, MRCS, Jan O. Jansen, FRCS, FFICM, Amy N. Apodaca, PhD, Todd E. Rasmussen, MD, and Mark J. Midwinter, MD, FRCS, Birmingham, United Kingdom

		439 PBT	1592 No PBT	
In-hospital transfusion	PRBC	2 (1-8.5) [0-49]	0 (0-3.5) [0-26]	<0.001**
	FFP	2 (0-7.5) [0-44]	0 (0-1) [0-20]	<0.001**
	Cryoprecipitate	0 (0-0) [0-4]	0 (0-0) [0-3]	0.068**
	Platelets	0 (0-0) [0-7]	0 (0-0) [0-6]	<0.007**
Total PRBC		4 (2-10) [0-53]	0 (0-3.5) [0-26]	<0.001**
Total FFP		2 (2-9) [1-44]	0 (0-1) [0-20]	<0.001**
Any in-hospital PRBC transfusion		75 (77)	38 (39)	<0.001**
Massive transfusion		12 (12)	8 (8)	0.388*
FFP/PRBC ratio		1 (0.83-1.23)	0.46 (0-0.72)	<0.001**
Mortality		8 (8.2)	19 (19.6)	0.013**

SHORT COMMUNICATION

Risk Management Analysis of Air Ambulance Blood Product Administration in Combat Operations

NICOLE POWELL-DUNFORD, JOSE F. QUESADA, ROBERT F. MALSBY, VICTORIA CHOU, ROBERT T. GERHARDT, KIRBY R. GROSS, AND STACY A. SHACKELFORD

Juin Oct 2013
Afgha Hélico
61 transfusions
Group O PRBC // group AB and group A plasma

TABLE II. COMPARISON OF VITAL STATUS PRE- AND POST-TRANSFUSION, N = 38

Vital Sign or Marker	Definition	Pre-Transfusion Median (IQR)	Post-Transfusion Median (IQR)	P-Value*
SBP [†]	Systolic BP	86 (70–104)	108 (85–127)	0.001
HR ^{††}	Heart rate	133 (125–141)	125 (110–138)	0.000
Shock Index (SI) [‡]	HR/SBP	1.6 (1.2–2.0)	1.1 (1.0–1.5)	0.000
Modified Shock Index (MSI)	HR/mean BP ^{##}	2.2 (1.7–2.6)	1.7 (1.3–2.1)	0.000

Pas d'effet adverse

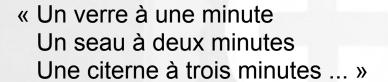
Transfusion en préhospitalier Remote damage control

Freeze dried plasma and fresh red blood cells for civilian prehospital hemorrhagic shock resuscitation

Geir A. Sunde, MD, Bjarne Vikenes, MD, Geir Strandenes, MD, Kjell-Christian Flo, Tor A. Hervig, MD, PhD, 16 patients
Einar K. Kristoffersen, MD, PhD, and Jon-Kenneth Heltne, MD, PhD, Bergen, Norway

Adverse Events

No transfusion reactions or complications were recorded with FDP or tranexamic acid given by the HEMS.



DAMAGE CONTROL TEMPS 1 CHIR

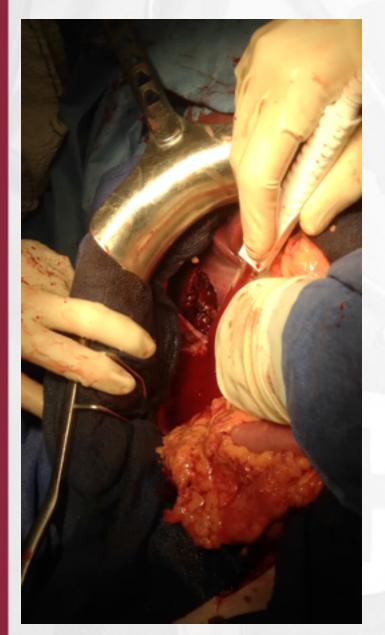
« LUTTE CONTRE LES VOIES D'EAU » « LUTTE CONTRE L'INCENDIE »

notre combat

Chirurgie écourtée

- Exploration
- Hémostase
- Contrôle contamination

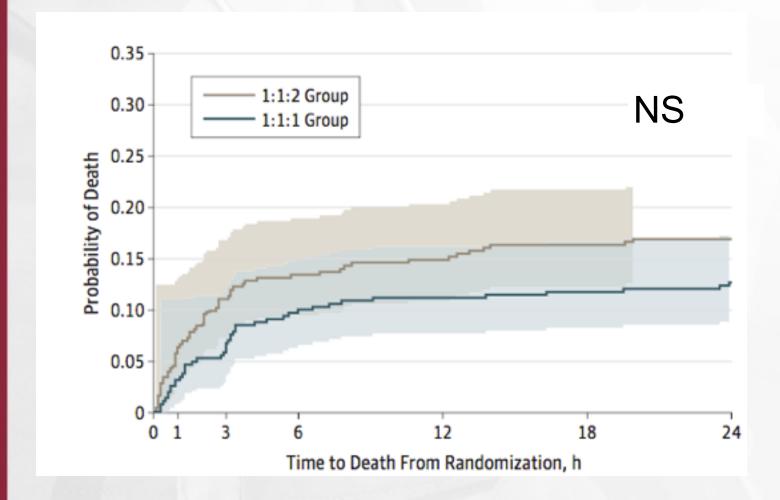
< 1 HEURE



« Voies d'eau »

Transfusion ++++

Original Investigation


Transfusion of Plasma, Platelets, and Red Blood Cells in a 1:1:1 vs a 1:1:2 Ratio and Mortality in Patients With Severe Trauma
The PROPPR Randomized Clinical Trial

1:1:1(338 patients) 6CGR/6PFC/1 CPA Vs

1:1:2 (342 patients)

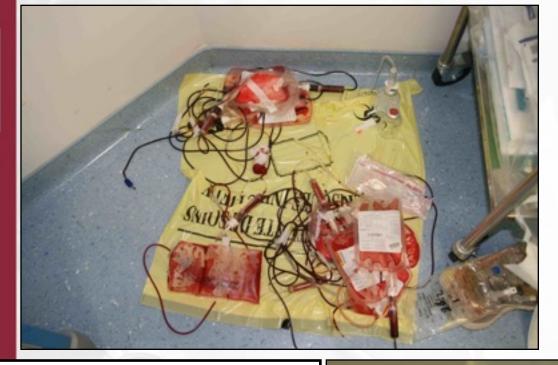
John B. Holcomb, MD; Barbara C. Tilley, PhD; Sarah Baraniuk, PhD; Erin E. Fox, PhD; Charles E. Wade, PhD; Jeanette M. Podbielski, RN;

Mortalité H24

Transfusion de sang frais total (TSFT)

- Collecté sur place
- Non fractionné
 - Pas de déleucocytation
- Sécurité transfusionnelle
- Stockage

1 poche de SFT


- 38-50 % Ht
- 150-400 000 plaq/ml
- Taux de facteurs 100 %

1 CGR+1PFC+1CUP

- 29 % Ht
- 80-90 000 plaq/ml
- Taux de facteurs 65 %

Society of Cardiovascular Anesthesiologists

Confinenceator Amenthesistings Section Editor: Charles W. Hegue, Jr. Perioperative Enhocantingsupty and Confinenceator Education Section Editor: Marrie J. Landon Remontasis and Transfusion Medicine Section Editor: Jeruid H. Levy SPECIAL ARTICLE

Fresh Whole Blood Use for Hemorrhagic Shock: Preserving Benefit While Avoiding Complications

Philip C, Spinella, MD,* Heather L, Reddy, PhD,† Jennifer S, Jaffe, MPH,* Andrew P, Cap, MD, PhD, FACP,‡ and Raymond P, Goodrich, PhD†

Transfusion support of patients with hemoenhagic shock has changed over time with the development of storage and processing methods. Transfusion medicine developed during World War I with the use of whole blood, and now in the developed world, component therapy predominates. In contrast, there is still clinical use of fresh whole blood (PWII) in the developing world, in a minority of children's hospitals, and in combat settings. Although there is a stationale for the use of FWIB in massively blending patients compared with the use of individual components, it has sarely been analyzed in prospective studies in adult trauma and misod critically ill patients have revived this decades old controversial question of the value of PWIB for patients with severe shock and congulopathy or these at risk. The risks of IWB use have also been highlighted roomty, which has caused some to focus on reducing these risks with alternative processing and storage methods for components have also not been adequately explored to determine whether they affect clinical outcomes. In this article, we review potential benefits and risks of PWIB use for patients with hemorrhagic shock from any cause, and how current and future processing and storage methods for successing and storage methods may affect efficacy and safety of IWB in this population. We intend this review to stimulate hypothesis generation and clinical twe-restigation in determining when PWIB may be indicated and how to optimally process and store IWB to maximize its risk-benefit ratio. (Anesth Analg 2012;115:751-90)

Sang total

Votre vie, notre combat

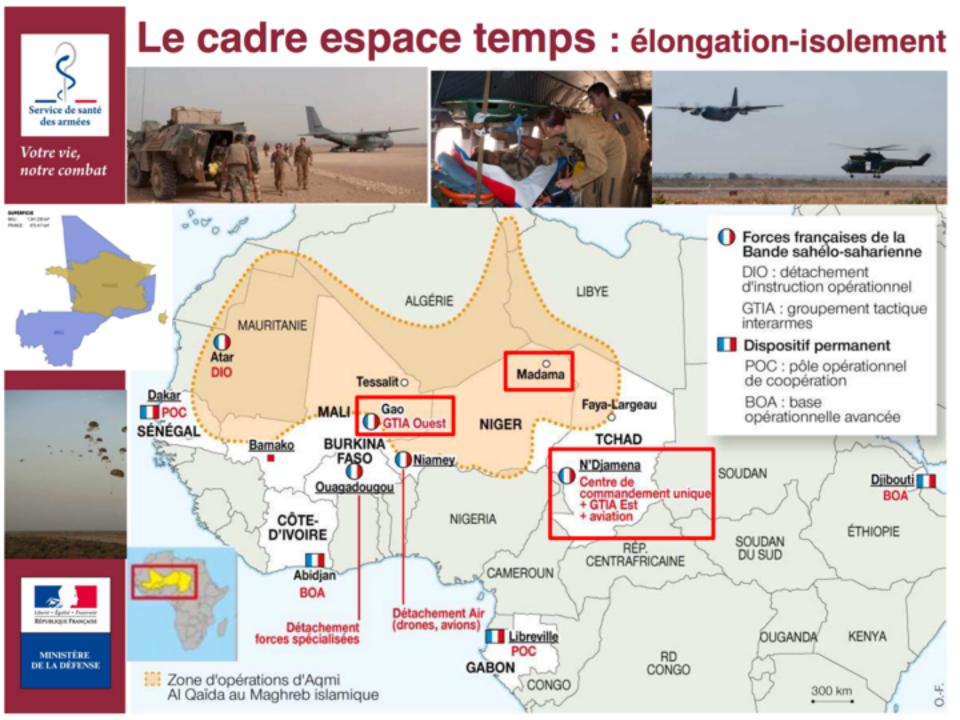
Blood far forward: Time to get moving!

Andrew P. Cap, MD, PhD, Heather F. Pidcoke, MD, PhD, Marc DePasquale, Joseph F. Rappold, MD, Elon Glassberg, MD, MHA, Håkon S. Eliassen, Christopher K. Bjerkvig, MD, Theodor K. Fosse, MD, Shawn Kane, MD, Patrick Thompson, Robert Sikorski, MD, Ethan Miles, MD, Andrew Fisher, Kevin R. Ward, MD, Philip C. Spinella, MD, and Geir Strandenes, MD, Bergen, Norway

For situations that permit the use of whole blood collected premission, storage at 4°C for up to 10 to 15 days is feasible while retaining hemostatic function. Previous concerns regarding platelet function, requirement of ABO-specific whole blood, and inability to leukoreduce have limited the application of whole blood in this manner. But now, with the current understanding that hemostatic platelet function is superior with storage at 4°C versus 22°C, the use of group O (low titer or not) whole blood is actually safer than attempting to provide ABO-specific whole blood under emergency circumstances, and that platelet-sparing whole-blood filters are available, it is very feasible to provide whole blood to a patient with life-threatening hemorrhagic shock in the prehospital (and in-hospital) setting. In fact, two large trauma programs in the United States have begun providing whole blood to casualties with life-threatening injuries.

J Trauma Acute Care Surg. 2015;78: S2-S6

DAMAGE CONTROL TEMPS 2 « RETOUR AU PORT »



Damage Control MEDEVAC = « NE saigne plus » !!!

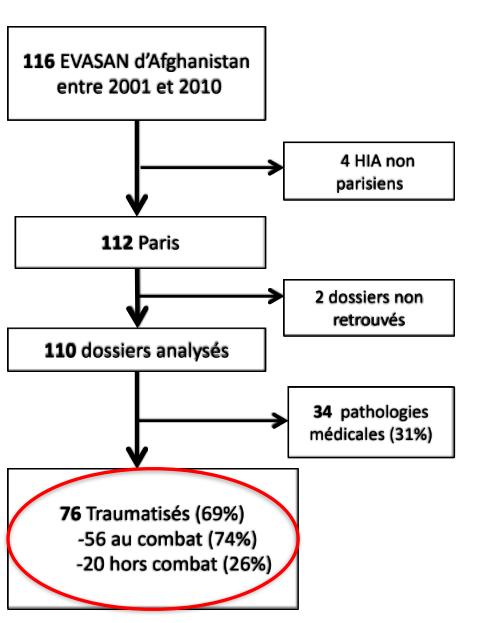
EVASAN

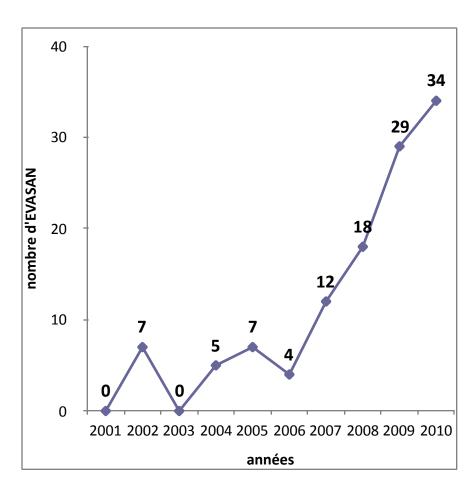
EVASAN collectives

EVASAN individuelles

MEDEVAC collective

MEDEVAC collective


MEDEVAC individuelle



MEDEVAC exemple Afghan

EVASAN

- Durée du rapatriement des blessés sur les HIA
 - Durée Moyenne = 1,89 (± 0,97 jour)
- 1 IDE + 1 MED spécialisé
 - +/- Présence MAR pour 68% des EVASAN
- 37% traumatisés étaient intubés-ventilés

notre combat

Transfusion durant EVASAN

- Transfusion des blessés français
 - 45% des patients
 transfusés au moins une fois

Afghanistan	EVASAN	HIA
28% (21)	4% (3)	35% (27)

- 5 transfusions massives
 - Soit 6,6%

MEDEVAC Expérience française

MC Saboureau

MECHANISM OF INJURY	BEFORE MEDEVAC		DURING MEDEVAC		
Gunshot	3 RBC	2 FDP		1 RBC	1 FDP
Blast	3 RBC	4 FDP		3 RBC	2 FDP
Severe burn					2 FDP
Blast	4 RBC	6 FDP		1 RBC	1 FDP
Gunshot	6 RBC	6FDP	3 WB	2 RBC	1 FDP
Blast	9 RBC	9 FDP	3 WB	2 RBC	2 FDP

Hypoxemia during aeromedical evacuation of the walking wounded

Transfusion ????

Jay Johannigman, MD, Travis Gerlach, MD, Daniel Cox, MD, Jon Juhasz, MD, Tyler Britton, RRT, Joel Elterman, MD, Dario Rodriquez, Jr., MSc, RRT, Thomas Blakeman, MSc, RRT, and Richard Branson, MSc, RRT, Cincinnati, Ohio

« Sixty-one casualties were evaluated during AE from Bagram Air Base to Landstuhl Regional Medical Center.

The mean (SD) age was 26.2 (6) years, Injury Severity Score (ISS) was 8 (11), and mean SpO₂ before AE was 96% (2%).

The mean (SD) transport time was 9.3 (1.3) hours.

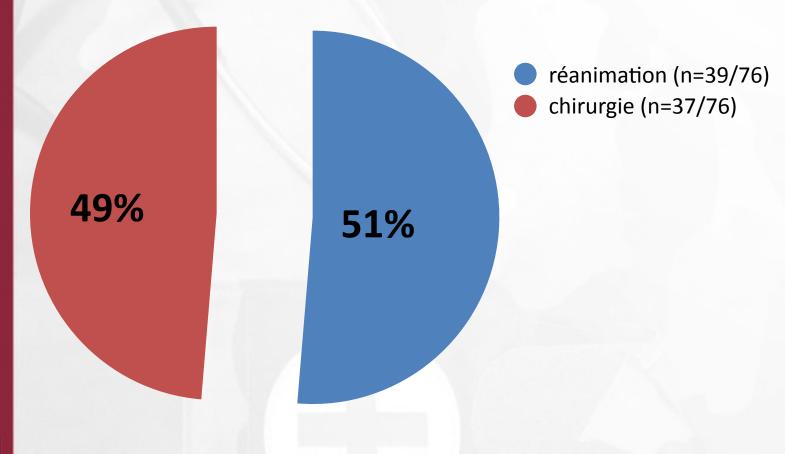
The mean (SD) hemoglobin at the time of enrollment was 13.2 (3.5) g/dL (9.4-18.0 g/dL).

Hypoxemia (SpO2 G 90%) was seen in 55 (90%) of 61 subjects.

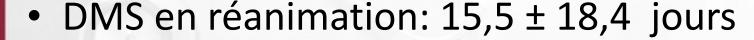
The mean duration of SpO2 less than 90% was 44 minutes.

Thirty-four patients (56%) exhibited an SpO2 less than 85% for 11.7 (15) minutes »

DAMAGE CONTROL TEMPS 3 REPARATION DEFINITIVE


Role 4 Métropole

Prise en charge en métropole



Données Role 4

- IGS 2 moyen: 28,6 ± 16,5

- ISS moyen: 22,3 ± 10,6

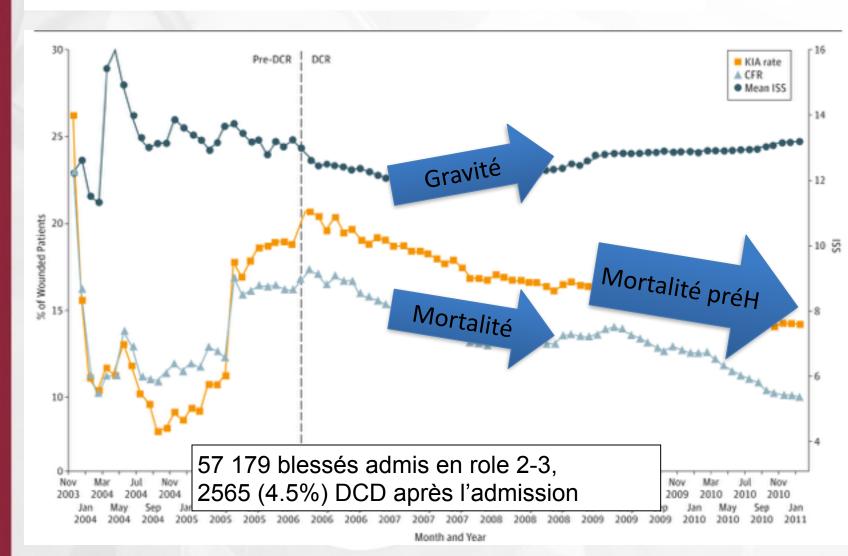
· Ventilation mécanique :

- 79% des patients (n=31/39)

Durée 10,7 ± 15,4 jr

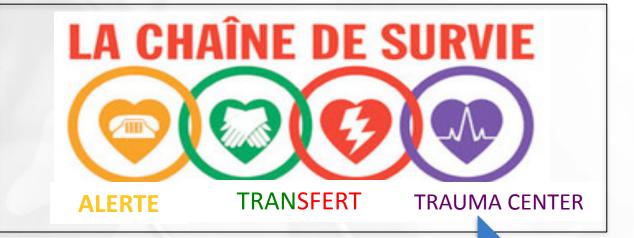
EER: 5% des patients (n=2/39)

Taux de mortalité intrahospitalière =1,3% (n=1/76)



Changing Patterns of In-Hospital Deaths Following Implementation of Damage Control Resuscitation Practices in US Forward Military Treatment Facilities

Nicholas R. Langan, MD; Matthew Eckert, MD; Matthew J. Martin, MD



MP Daban

jeanlouis.daban@hotmail.fr

ème

Journée de Traumatologie de l'Hôpital d'Instruction des **Armées PERCY**

Jeudi 9 juin 2016

Public: Médecin et paramédicaux Entrée libre

Organisation: Club Trauma PERCY, clubtraumapercy@gmail.com, Tel:01 41 46 60 00 Hôpital d'Instruction des Armées Percy, 101 av Henri Barbusse, 92140 Clamart

